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1. Introduction 

In a previous paper [1], we have derived rigorous relations between the electronic 
energy and the electron momentum density of a molecular system based on the 
integrated Hel lmann-Feynman theorem [2] with respect to the electron mass. 
We here generalize the previous results of energy-momentum density relations 
for the case where a parameter  A is embedded in the kinetic and potential energy 
parts through arbitrary functions g(A) and h(A). We also derive energy 
expressions when the Compton profile (see e.g. [3]) or the autocorrelation 
function (see e.g. [4]) is known. Use of scaling relations is discussed. Though 
we confine ourselves to the electronic problem, the results have a straightforward 
applicability to the nuclear problem (see [1]). Atomic units are used throughout 
this paper. 

2. Energy Differences from Momentum Density and Related Quantities 

Let  us consider an N-electron molecular system whose electronic Hamiltonian 
takes the form of 

H'((r};  {R}, A) = g (A)T({r}) + h (A) V({r}; {R}), (1) 
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where T and V are the parameter-independent parts of the kinetic and Coulom- 
bic potential energy operators respectively, and {!"} and {R} denote the sets of 
position vectors of the electrons and the nuclei. The functions g(A) and h(A) 
may be regarded as completely fictitious functions or as some realistic scaling 
functions for the electron mass, Planck constant, electronic charge, and so on. 

Since Eq. (1) is rewritten as 

H'({r}; {R}, A) = h(A)H({r}; {R}, A), 

H({r}; {R}, A) = f(A )T({r})+ V((r}; {R}), 

(2a) 

(2b) 

f(,~ ) = g(A )/h (A), (2c) 

the energy E'({R}, A) corresponding to Hamiltonian H '  is obtained from the 
knowledge of the energy E({R}, A) corresponding to the new Hamiltonian H 
through the relation E'({R}, ; t )= h(~t)E({R}, ;t). We assume that f(A) is a real 
continuous function and specifically f (A)= 1 represents the actual system. 
According to the method described previously [1], we can obtain a relation 
between E and the momentum density as follows. 

The parameter A appears only linearly to the kinetic energy operator in the 
Hamiltonian H (Eq. (2b)). Then using the momentum representation, we obtain 

zkE = E()t2) -E(A 1) (3a) 

= fxl 2dA [df (X )/dA ][I dp (p2/2)p(P; A )] (3b) 

(3c) 

from the integrated Hellmann-Feynman theorem with respect to the parameter 
A. Here the other parameter {R} is omitted for the sake of simplicity, p(p) is 
the momentum density of the system specified by the Hamiltonian H, p the 
momentum vector of an electron, and p = IPl. fl =f()tl)  and f2 =f(A2). Eq. (3) 
implies that 2rE is free from the functional form of f, and we can treat the 
function f as a single parameter. As discussed in a previous paper [1], 2rE 
becomes the energy itself, if the range of the integration in Eq. (3c) is chosen 
to be f l  = oo and f2 = 1. 

Exchanging the order of the integrations of Eq. (3c), we get 

AE = I dp (p2/2)fi(p), ff 
f2 

fi(p) = dfp(p;f), (4) 
1 

which shows that the modified momentum density fi governs the energy. When 
2~r 

the radial momentum density I(p) [=~o d~p ~o dOpp 2 sin Opp(p)] is used, Eq. 
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(4) is simplified to 

AE = dp (p2/2)f(p), [ ( p ) =  df I (p; f ) .  (5) 
1 

Using the isotropic Compton profile J(q) [=(1/2) ~lql dpp-II(P)] and the direc- 
t -  "+~ d " i"= tional Compton profiles Yi(pi) L-J-o~ pi, dpi,,p(p)] (i, 1, x ,y ,z ) ,  we can 

rewrite Eqs. (4) and (5) as follows. 

ALE = dq (3q2)j(q), J(q) = dfJ(q;f) .  (6) 
1 

4-oO 

= = dfJi(Pi;f). (7) 
i =  y , Z  cO 1 

When the Fourier transform B(r) [=~dpexp(-ipr)o(p)] of p(p) and its 
spherical average b(r) [=(4~r)-1JoZ=d4~ jodO sin OB(r)] are applied, we also 
obtain 

AE = -(1/2)[/t(2'~176176176 +/t(~176 

If 2 ~(r) = dfB(r;f), 
1 

(8) 

ff 
f2 

AE = -(3/2)/~(2~(0), b(r) = dfb (r; f), (9) 
1 

where/~(l . . . .  )(r) = Ol+m+"B(r)/(OxlOymOz") and 6(")(r)=d"b(r)/dr".  It may be 
a merit of the use of B(r) and b(r) that B(r) is the autocorrelation function of 
the position wave function and reduces to the overlap integral within the indepen- 
dent particle model and the natural orbital expansion [4]. Eqs. (8) and (9) result 
from the fact that the second moment of momentum is proportional to the 
second gradient of the autocorrelation function at the origin [5, 6]. We note that 
in Eqs. (7) and (8), AE is separated into the three directional components. 

3. Use of Scaling Relations 

In the preceding section, we have derived a relation between the energy change 
and the momentum density by considering a fictitious process where the para- 
meter f varies from f l  to f2. However, we can obtain the required modified 
quantities from the result for the real system (f  = 1) by recalling the fact that 
the momentum density corresponding to the Hamiltonian H (Eq. (2b)), for 
example, satisfies the scaling relation p(p;  {R}, f )=f3p ( fp;{ f - lR}  ' 1). Namely, 
by the use of scaling relations, the six modified quantities appeared in eqs. (4)-(9) 
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are rewritten as 

d(P; {R})=ffi2dff3p(fP; {U1R}, 1), 

/~(p ; { R } )  = dffI(fp; {f-'R}, 1), 
1 

I, '2 J(q; {R}/= d f f J ( fq ;  { F ' R } ,  1), 
1 

I? Z(pi; { R } )  = dfffdfp,; {f- 'R},  1t, 
1 

/~(r ;  {R})  = dfB(f-lr; {f-'R}, 1), 
1 

I) /~(r; {R}) = dfb(f-~r; {f-lR},  1), 
1 

i = X, y, Z, 
(10) 

where the geometry dependence has been explicitly given. The right-hand-sides 
of the above equations mean the process of configurational change in the real 
system since the integrands depend on {f-lR}. 

Fig. la  depicts schematically the scaling relation in momentum space. The 
fictitious process which we have considered in Sect. 2 is represented by the 
vertical arrow FIF2. When the scaling relation is applied, F1Fz is projected to 
the arrow F'~F'z along the hyperbola st = 1 on the plane f = 1. Simultaneously, 
the scaling factors for the geometry {R} and the momentum {p} are introduced. 
In the special case of atoms, the relation becomes a projection on the f-t plane 
(s = 0). Fig. lb  shows the scaling relation in position space. The fictitious process 
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Fil~. 1. Schematic representation of scaling relations. (a) Momentum space. (b) Position space 
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F1F2 is projected to the arrow F'~F'2 along the straight line s = u on the plane 
[ = 1. Since the scaling factor for the geometry {R} is identical to that for the 
electronic coordinates {r}, the process F~F; represents a uniform scaling process. 
The result reflects the fact [1] that the integrated Hellmann-Feynman theorem 
with respect to f is equivalent to the virial theorem for a uniform scaling process 
[7]. This point was also used by Frost and Lykos [-8] in their derivation of the 
virial theorem from the Hellmann-Feynman theorem. 
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